Улыбышев Ю.П.Что это за «точки», чем они привлекательны в космических проектах и есть ли практика их использования? С этими вопросами редколлегия портала «Планета Королева» обратилась к доктору технических наук Юрию Петровичу Улыбышеву.

 

Проводит интервью Волков Олег Николаевич, заместитель руководителя проекта «Великое начало».

 

Волков О.Н.: В гостях интернет портала «Планета Королева заместитель руководителя научно-технического центра ракетно-космической корпорации «Энергия», начальник отдела космической баллистики, доктор технических наук Юрий Петрович Улыбышев. Юрий Петрович, добрый день!

Улыбышев Ю.П..: Добрый день.

В.: Существование на околоземной орбите пилотируемых комплексов это не диковинка. Это обычное, привычное дело. В последнее время в международном космическом сообществе проявляется интерес к другим космическим проектам, в которых предполагается размещать космические комплексы, в том числе, и пилотируемые в, так называемых, точках Лагранжа. Среди них проект посещаемых космических станций, проект станций, размещаемых для поиска опасных астероидов и слежения Луны.

Что такое точки Лагранжа? В чем их существо с точки зрения небесной механики? Какова история теоретических исследований по данному вопросу? Каковы основные результаты исследований?

У.: В нашей солнечной системе имеется большое количество природных эффектов, связанных с движением Земли, Луны, планет. К ним относятся и, так называемые, точки Лагранжа. В научной литературе их чаще даже называют точками либрации. Чтобы объяснить физическую суть этого явления, для начала рассмотрим простую систему. Есть Земля, и вокруг нее по круговой орбите летает Луна. Ничего больше в природе нет. Это, так называемая, ограниченная задача трех тел. И вот в этой задаче мы рассмотрим космический аппарат и его возможное движение.

Самое первое, что приходит на ум рассмотреть: а что будет, если космический аппарат находится на линии, соединяющей Землю и Луну. Если мы будем двигаться по этой линии, то у нас есть два гравитационных ускорения: притяжение Земли, притяжение Луны, и плюс есть центростремительное ускорение за счет того, что эта линия постоянно вращается. Очевидно, что в какой-то точке все эти три ускорения вследствие того, что они разнонаправлены и лежат на одной линии, могут обнулиться, т.е. это будет точка равновесия. Вот такую точку и называют точкой Лагранжа, либо либрационной точкой. На самом деле таких точек пять: три из них находятся на вращающейся линии, соединяющей Землю и Луну, их называют коллинеарными точками либрации. Первая, которую мы с вами разобрали, обозначают L1, вторая находится за Луной - L2, и третья коллинеарная точка - L3 находится с обратной стороны Земли по отношению к Луне. Т.е. на этой линии, но в противоположном направлении. Это первые три точки.

Есть еще две точки, которые находятся с двух сторон вне этой линии. Их называют треугольными точками либрации. Все эти точки показаны на этом рисунке (Рис.1). Вот такая идеализированная картинка.

 

Точки либрации системы Земля – Луна
Рис.1. Точки либрации системы Земля – Луна

Теперь, если мы поместим в любую из этих точек космический аппарат, то в рамках вот такой простой системы он всегда там и останется. Если мы чуть – чуть отклонимся от этих точек, то в их окрестности могут существовать периодические орбиты, их называют еще гало-орбитами (см. Рис.2), и космический аппарат сможет двигаться вокруг этой точки по вот таким своеобразным орбитам. Если говорить о точках либрации L1, L2 системы Земля – Луна, то период движения по этим орбитам будет порядка 12 - 14 суток, и они могу быть выбраны совершенно разным образом.

Гало-орбиты системы Земля - Луна
Рис.2. Гало-орбиты системы Земля - Луна

На самом деле, если мы вернемся к реальной жизни и рассмотрим вот эту задачу уже в точной постановке, то все окажется гораздо сложнее. Т.е. космический аппарат не может находиться очень долго, больше, скажем, одного периода, в движении по такой вот орбите, не может оставаться на ней, за счет того, что:

- во-первых, орбита Луны вокруг Земли не является круговой – она имеет небольшую эллиптичность;

- кроме того, на космический аппарат будет действовать притяжение Солнца, давление солнечного света.

В итоге космический аппарат не сможет оставаться на такой орбите. Поэтому, с точки зрения реализации космического полета по подобным орбитам, необходимо выведение космического аппарата на соответствующую гало-орбиту и затем периодическое проведение маневров по ее поддержанию.

По меркам межпланетных полетов затраты топлива на поддержание для таких орбит достаточно малы, не больше 50 – 80 м/сек в год. Для сравнения могу сказать, поддержание орбиты геостационарного спутника в год это тоже 50 м/сек. Там мы удерживаем геостационарный спутник около неподвижной точки - эта задача гораздо проще. Здесь мы должны удерживать космический аппарат в окрестности вот такой гало-орбиты. В принципе, практически эта задача реализуема. Более того, она реализуема с использованием двигателей малой тяги, и каждый маневр это доля метра или единицы м/сек. Отсюда напрашивается возможность использования орбит в окрестности этих точек для космических полетов, в том числе, пилотируемых.

Теперь, с точки зрения, а почему они выгодны, и чем они интересны, именно, для практической космонавтики?

Если вы все помните, американский проект «APOLLO», в котором использовалась окололунная орбита, с которой спускался аппарат, приземлялся на поверхность Луны, через некоторое время возвращался на окололунную орбиту и затем летел к Земле. Окололунные орбиты представляют определенный интерес, но они не всегда удобны для пилотируемой космонавтики. У нас могут быть различные нештатные ситуации, кроме того естественно желание изучать Луну не только в окрестности какого-то района, а вообще изучать всю Луну. В итоге оказывается, что использование окололунных орбит связано с рядом ограничений. Ограничения накладываются на даты старта, на даты возврата с окололунной орбиты. Параметры окололунных орбит могут зависеть от располагаемой энергетики. Скажем, полярные районы могут быть недоступны. Но самый главный, наверное, аргумент в пользу космических станций в окрестностях точек либрации заключается в том, что:

- первое, мы можем стартовать с Земли в любой момент времени;

- если станция находится в точке либрации, и космонавты должны лететь на Луну, они могут из точки либрации, вернее с гало-орбиты, лететь в любую точку на поверхности Луны;

- теперь, когда экипаж прилетел: с точки зрения пилотируемой космонавтики, очень важно обеспечение возможности быстрого возврата экипажа в случае каких-то нештатных ситуаций, болезней членов экипажа и т.п. Если мы говорим про окололунную орбиту, нам может понадобиться ожидание, допустим, времени старта 2 недели, а здесь мы можем стартовать в любой момент времени – с Луны до станции в точку либрации и затем к Земле, либо, в принципе, сразу к Земле. Такие преимущества достаточно явным образом видны.

Имеются варианты использования: L1 или L2. Есть определенные различия. Как вы знаете, Луна повернута к нам всегда одной и той же стороной, т.е. период ее собственного вращения равен периоду ее движения вокруг Земли. В итоге, обратная сторона Луны никогда не видна с Земли. В этом случае можно выбрать гало-орбиту такую, что она всегда будет находиться на линии видимости с Землей и иметь возможность осуществления связи, наблюдений и еще каких-то экспериментов, связанных с обратной стороной Луны. Таким образом, космические станции, размещенные в точке либо в точке L1, либо в точке L2, для пилотируемой космонавтики могут иметь определенные преимущества. Кроме того, интересным является то, что между гало-орбитами точек L1 или L2 можно осуществить, так называемый, низкоэнергетический перелет, буквально, 10 м/сек, и мы перелетим с одной гало-орбиты на другую.

В.: Юрий Петрович, у меня вопрос: точка L1 находится на линии между Луной и Землей, и, как я понимаю, с точки зрения обеспечения связи между космической станцией и Землей, более удобна. Вы говорили, что L2, точка, которая находится за Луной, тоже представляет интерес для практической космонавтики. А как обеспечить связь с Землей, если станция будет находиться в точке L2?

У.: Любая станция, находясь на орбите в окрестностях точки L1, имеет возможность непрерывной связи с Землей, любая гало-орбита. Для точки L2 несколько сложнее. Это связано с тем, что космическая станция при движении по гало-орбите может оказаться по отношению к Земле, как бы, в тени Луны, и связь тогда невозможна. Но можно построить такую гало-орбиту, которая всегда будет иметь возможность связи с Землей. Это специально выбранная орбита.

В.: Это несложно сделать?

У.: Да, можно сделать, и, так как ничто не удается сделать бесплатно, потребуется несколько большего расхода топлива. Скажем, вместо 50 м/сек будет 100 м/сек. Наверное, это не самый критичный вопрос.

В.: Еще один уточняющий вопрос. Вы говорили, что энергетически легко перелететь из точки L1 в точку L2, и обратно. Правильно я понимаю, что не имеет смысла создавать две станции в районе Луны, а достаточно иметь одну станцию, которая энергетически легко переходит в другую точку?

У.: Да, кстати говоря, наши партнеры по международной космической станции предлагают один из вариантов для обсуждения развития проекта МКС в виде космической станции с возможностью перелета от точки L1 в точку L2, и обратно. Это вполне реализуемо и обозримо по времени перелета (скажем, 2 недели) и может быть использовано для пилотируемой космонавтики.

Еще я хотел сказать, что на практике полеты по гало-орбитам в настоящее время были реализованы американцами по проекту ARTEMIS. Это примерно 2-3 года назад. Там два космических аппарата летали в окрестностях точек L1 и L2 с поддержанием соответствующих орбит. Один аппарат совершил перелет из точки L2 в точку L1. Вся эта технология на практике реализована. Конечно, хотелось, чтобы это сделали мы.

В.: Ну, у нас еще все впереди. Юрий Петрович, следующий вопрос. Как я понял из Ваших рассуждений, любая космическая система, состоящая из двух планет, имеет точки Лагранжа, или точки либрации. Существуют такие точки для системы Солнце – Земля, и в чем привлекательность этих точек?

У.: Да, конечно, совершенно правильно. В системе Земля – Солнце имеются тоже точки либрации. Их тоже пять. В отличие от окололунных точек либрации полет в тех точках может быть привлекателен уже для совсем других задач. Если говорить конкретно, то наибольший интерес представляют точки L1 и L2. Т.е. точка L1 по направлению от Земли к Солнцу, а точка L2 в противоположном направлении на линии, соединяющей Землю и Солнце.

Так вот, первый полет в точку L1 в системе Солнце - Земля был осуществлен в 1978 году. С тех пор было реализовано несколько космических миссий. Основной лейтмотив таких проектов был связан с наблюдением за Солнцем: за солнечным ветром, за солнечной активностью, в том числе. Есть системы, которые используют предупреждение о каких-то активных процессах на Солнце, влияющих на Землю: на наш климат, на самочувствие людей и т.д. Это то, что касается точки L1. Она в первую очередь интересна человечеству возможностью наблюдения за Солнцем, за его активностью и за процессами, которые проходят на Солнце.

Теперь точка L2. Точка L2 тоже интересна и, в первую очередь, для астрофизики. И связано это с тем, что космический аппарат, размещенный в окрестностях этой точки, может использовать, например, радиотелескоп, который будет экранирован от излучения со стороны Солнца. Он будет направлен противоположно от Земли и Солнца и может позволить проводить более чисто астрофизические наблюдения. Они не зашумлены Солнцем, ни какими-то отраженными излучениями со стороны Земли. И еще интересно, т.к. мы движемся вокруг Солнца, за 365 дней делаем полный оборот, то подобным радиотелескопом можно рассмотреть любое направление вселенной. Такие проекты тоже есть. Вот сейчас у нас в Физическом институте Российской Академии Наук разрабатывается такой проект «Миллиметрон». В этой точке тоже ряд миссий был реализован, и космические аппараты летают.

В.: Юрий Петрович, с точки зрения поиска опасных астероидов, которые могут угрожать Земле, в какой точке надо размещать космические аппараты, чтобы они следили за опасными астероидами?

У.: Вообще-то, такого прямого, очевидного ответа на этот вопрос, мне кажется, нет. Почему? Потому что движущиеся астероиды по отношению к солнечной системе, как бы, группируются в ряд семейств, у них совершенно разные орбиты и, по моему мнению, можно в окололунной точке поместить аппарат для одного типа астероидов. То, что касается точек либрации системы Солнце - Земля, также можно посмотреть. Но такого очевидного, прямого ответа: «такая-то точка в такой-то системе» - мне кажется, трудно дать. Но, в принципе, точки либрации могут быть привлекательны для защиты Земли.

В.: Правильно я понимаю, солнечная система имеет еще много интересных мест, не только Земля – Луна, Земля – Солнце. А какие еще интересные места солнечной системы можно использовать в космических проектах?

У.: Дело в том, что в солнечной системе в том виде, в каком она существует, помимо эффекта, связанного с точками либрации, существует еще ряд таких эффектов, связанный с взаимным движением тел в солнечной системе: и Земли, и планет, и т.д. У нас в России я, к сожалению, не знаю работ на эту тему, а вот, в первую очередь, американцы и европейцы выявили, что в солнечной системе существуют, так называемые, низкоэнергетические перелеты (причем, эти исследования - достаточно сложные и в математическом плане работы, и в плане вычислительном – они требуют больших вычислительных суперкомпьютеров).

Вот, к примеру, возвращаемся к точке L1 системы Земля - Луна. По отношению к этой точке можно построить (это привлекательно для автоматических аппаратов) перелеты по всей солнечной системе, давая небольшие, по меркам межпланетных полетов, импульсы порядка нескольких сотен м/сек. И тогда этот космический аппарат начнет медленное движение. При этом можно построить траекторию таким образом, что она обойдет ряд планет.

В отличие от прямых межпланетных перелетов это будет длительный процесс. Поэтому, для пилотируемой космонавтики он не очень подходит. А для автоматических аппаратов он очень может быть очень привлекательным.

Вот на картинке (Рис.3) показана иллюстрация этих перелетов. Траектории, как бы, зацепляются друг за друга. Переход с гало-орбиты с L1 в L2. Он стоит достаточно немного. Вот там - то же самое. Мы как бы скользим по этому тоннелю, и в месте зацепления или близком к зацеплению с другим тоннелем мы даем небольшой маневр и перелетаем, идем к другой планете. Вообще, очень интересное направление. Оно называется «Superhighway» (по крайней мере, американцы используют такой термин).

 

Солнечная система пронизана туннелями переходов с минимальной энергетикой
Рис.3. Солнечная система пронизана туннелями переходов с минимальной энергетикой
(рисунок из зарубежных публикаций)

 

Практическая реализация частично была сделана американцами в рамках проекта GENESIS. Сейчас они тоже в этом направлении работают. Мне кажется, это одно из наиболее перспективных таких направлений в развитии космонавтики. Потому что все-таки с теми двигателями, «движителями», которые у нас имеются в настоящее время, я имею в виду двигатели большой тяги и двигатели электрореактивные (которые пока имеют очень маленькую тягу и требуют большую энергию), мы сдвинуться в плане освоения солнечной системы или дальнейшего изучения сильно не можем. А вот такие многолетние или даже десятилетние задачи перелета могут быть для исследований очень интересны. Так же, как Вояджер. Он летал, кажется, с 1978 года или 1982 (с 1977 года – ред.), сейчас ушел за пределы солнечной системы. Это направление очень сложно. Во-первых, сложно в математическом плане. Кроме того, здесь анализ и расчеты по механике перелетов требуют высоких ресурсов компьютеров, т.е. на персональном компьютере это сомнительно обсчитать, нужно использовать суперкомпьютеры.

В.: Юрий Петрович, можно систему низкоэнергетичных переходов использовать для организации космического солнечного патруля – постоянной системы мониторинга солнечной системы с имеющимися ограничениями по топливу, которые у нас есть?

У.: Даже между Землей и Луной, а также, допустим, между Землей и Марсом, Землей и Венерой существуют, так называемые квазипериодические траектории. Подобно тому, как мы разбирали гало-орбиту, которая в идеальной задаче без возмущения существует, но, когда мы накладываем реальные возмущения, мы вынуждены корректировать каким-то образом орбиту. Эти квазипериодические орбиты требуют тоже небольших, по меркам межпланетных полетов, когда характеристические скорости – это сотни м/сек. С точки зрения космического патруля для наблюдения за астероидами они могут быть привлекательны. Единственный минус в том, что они слабо подходят для нынешней пилотируемой космонавтики из-за большой длительности перелетов. А с точки зрения энергии, и даже с теми двигателями, которые сейчас в нашем столетии есть, можно сделать достаточно интересные проекты.

В.: Правильно я понимаю, точки либрации системы Земля - Луна, Вы предполагаете для пилотируемых объектов, а точки, о которых Вы говорили раньше, для автоматов?

У.: Еще я хотел бы добавить один момент, космическая станция в L1 или в L2 может служить для запуска небольших космических аппаратов (американцы называют такой подход «Gate Way» - «Мост во вселенную»). Аппарат может с использованием низкоэнергетических перелетов как-то периодически двигаться вокруг Земли на очень больших расстояниях, либо осуществлять перелет к другим планетам или даже облет нескольких планет.

В.: Если немного пофантазировать, то в дальнейшем Луна будет являться источником космического топлива, и на точку либрации системы Земля - Луна будет поступать лунное топливо, то можно заправлять космические аппараты космическим топливом и посылать космические патрули по всей солнечной системе.

Юрий Петрович, Вы рассказывали об интересных явлениях. Их исследовали американская сторона (NASA), а в нашей стране занимаются этими проектами?

У.: Проектами, связанными с точками либрации системы Земля – Луна, насколько я знаю, наверное, не занимаются. Вот проектами, связанными с точками либрации системы Солнце – Земля, занимаются. У нас большой опыт в этом направлении имеют Институт прикладной математики Российской Академии Наук имени Келдыша, Институт космических исследований, некоторые ВУЗы в России пытаются заниматься подобными проблемами. Но такого систематического подхода, большой программы, потому что программа должна начинаться с подготовки кадров, причем кадров с очень высокой квалификацией, нет. В традиционных курсах по космической баллистике, по небесной механике сама механика движения космических аппаратов в окрестности точек либрации, низкоэнергетические перелеты, практически отсутствует.

Я должен отметить, во времена Советского Союза подобными программами занимались более – менее активно, и специалисты были, как я уже упоминал, в Институте прикладной математики, ИКИ, ФИАН. Сейчас многие из них находится в таком возрасте… А большое количестве молодежи, которая занималась бы этими проблемами, проглядывается весьма слабо.

Я упомянул американцев не в том плане, чтобы их похвалить. Дело в том, что в США этими проблемами занимаются очень крупные подразделения. В первую очередь, в лаборатории JPL NASA большой коллектив работает, и они осуществили, наверное, большинство американских проектов межпланетной космонавтики. Во многих американских университетах, в других центрах, в NASA, работает большое количество специалистов с хорошей подготовкой, с хорошим компьютерным оснащением. Они идут по этой проблеме, в этом направлении очень широким фронтом.

У нас, к сожалению, это как-то скомкано. Если бы такая программа в России и появилась бы, представляла в целом большой интерес, то на развертывание этих работ, могло бы уйти достаточно длительное время, начиная с подготовки кадров и кончая исследованиями, расчетами, разработкой соответствующих космических аппаратов.

 

В.: Юрий Петрович, а какие ВУЗы готовят специалистов по небесной механике в нашей стране?

У.: Насколько я знаю, в МГУ, в Петербургском университете есть кафедра небесной механики. Там такие специалисты есть. Сколько их, я затрудняюсь ответить.

В.: Потому что, чтобы начать реализовывать практическую сторону вопроса, надо сначала стать глубоким специалистом, а для этого надо иметь соответствующую специальность.

У.: И иметь очень хорошую математическую подготовку.

В.: Хорошо. А можете сейчас привести список литературы, который помог бы тем людям, которые не имеют сейчас специальной математической подготовки?

У.: На русском языке, насколько я знаю, посвященная точкам либрации, есть одна монография Маркеева. Если память мне не изменяет, она называется так «Точки либрации в небесной механике и космодинамике». Она, примерно, в 1978 году выходила. Есть справочник под редакцией Дубошина «Справочник по небесной механике и астродинамике». Он выдержал 2 издания. Насколько я помню, в нем тоже такие вопросы есть. Остальное можно почерпнуть, во-первых, на сайте Института прикладной математики есть электронная библиотека и свои препринты (отдельно изданные статьи) по этому направлению. Они печатают в свободном доступе в Интернете. С помощью поисковой системы можно найти соответствующие препринты и их посмотреть. Очень много доступного с Интернете материала на английском языке.

В.: Спасибо за увлекательный рассказ. Я надеюсь, эта тема будет интересна для наших пользователей интернет ресурса. Спасибо Вам огромное! 

Интервью доктора тех...
Интервью доктора технических наук Ю.П.Улыбышева

 

 

 

1 1 1 1 1 1 1 1 1 1 Рейтинг 3.00 (2 Голосов)

 

Международная космическая станция Автоматические космические системы Роскосмос РКК Энергия "Морской старт" и "Наземный старт" "Морской старт" и "Наземный старт"